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Abstract—A signal processing method is proposed to adaptively effective sensor data streams by identifying then subsstyue
denoise sensor data streams corrupted by noise that can beaddressing all the implementation issues that emerge while

approximated as additive white Gaussian. This on-line filtering ; _ ; ; i
method takes advantage of the Monte-Carlo Stein's Unbiased applying the MC-SURE algorithmic concept to on-line data

Risk Estimate (MC-SURE) algorithm, which enables a blind Processing settings. The paper is organized as follows. In
optimization of the denoising parameters for a wide class of Section Il, the general concept of the MC-SURE algorithm

filters. We formulate a straightforward and practical framework is described and the associated on-line-implementatgues
for adequately denoising real sensor streaming data by identi- are discussed. Section Ill deals with the steps taken tceaddr
fying and solving the challenges that arise as the MC-SURE o ancountered problems. Results and discussions are give

algorithm is applied in on-line data processing settings. The . - - - .
proposed technique has been successfully tested using real-world'" Section IV and concluding remarks, in Section V.

datasets. Il. CONCEPTS ANDCHALLENGES

|. INTRODUCTION The MC-SURE algorithm optimizes the (vector)-parameter

The increasing affordability of sensors is enabling cosi of a continuous and (weakly) differentiable denoising func
effective and real (or near-real) time monitoring of completion fx(-). Consider the noisy data
phenomena and systems such as fusion in Tokamak reactors,
electric power grids or large-scale infrastructure nekgoin
these systems, data analysis algorithms are applied toungeascomprised of a desired signale RY andw < R", a zero-
ments captured from multiple sensors to monitor the phenomean AWGN with variancer?. The mapping
ena or systems under consideration by tracking their ojngrat .
states, detecting deviations from their normal behaviod a $x = fay) @

etc. The effectiveness of such real-time system monitoring the \-parametrized data filtering operation that produces
algorithms depends, however, on the quality of the inpudidaly signal estimate 0. The MC-SURE procedure finds the
i.e., their Signa|-t0—n0ise power ratio. Since sensor dag@ 0pt|ma| parameter for denoisirw by m|n|m|z|ng a proxy of
typically subject to non-negligible measurement errore i the mean-squared-error (MSE) criterion; namely, Siein’s

noise, recorded measurements must be adequately filtered)piased Risk Estimate (SURE) [2]. This SURE-statistic
remove most of the noise contributions while preserving th&timating the MSE is expressible [1] as

important waveform information. Although a host of denogsi . 002
algorithms already exist, most are not .|nherently designed T, (y) = —|y — &[>+ Ldivy{fA(y)} — o2 (3)
for real (or near-real) time data processing: they ofterk lac N N
an automated mechanism for selecting the best parametérere diy {f\(y)} denotes the divergence of the denoising
value for denoising arbitrary measurement sequences tisingfunction with respect to the data. The MSE-based optimal
prescribed filter. denoising parametek* is thus the minimizer of the SURE-
We develop a simple and practical method for on-lineurve {Th(y) : A € R¥}. Fig. 1 illustrates the automated
denoising of sensor data streams with arbitrary wavefordenoising of a data segment using the MC-SURE. The MC-
characteristics by using the Monte-Cafiein’s Unbiased Risk SURE procedure is particularly well-suited to online data
Estimate (MC-SURE) algorithm [1]: an approach that enabledenoising as it produces thiest filter parameter without any
a blind optimization of the regularization parameters ofidev assumption about the underlying signal. Furthermore, gusin
class of filters that seek to recover an arbitrary signalgaied a Monte-Carlo approach to compute the divergence term in
by additive white Gaussian noise (AWGN). The MC-SUREquation 3, provides more options when selecting a noise-
formulation is particularly suited for the denoising of sen removal filter since we are now not limited to filters with
data streams since it produces timean-squared-error-based closed-form expressions. The application of the MC-SURE
optimal denoising parameter for a chosen filter without arsigorithm to streaming data presents however some préctica
assumption about the underlying noise-free signal. Thikwochallenges. In online data processing settings, the need to
concerns the development of a practical strategy for engbliminimize latency dictates that processed data blocks have a

y=stw (1)
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(a) The SURE-curve approximates the MSE-curve and * \values
thus used as a proxy for finding the parametérthat

minimizes the MSE. Fig. 2: SURE-curves for two groups of data segments: 20
length-25 data segments and 20 length-300 data segments

be expressed as
divy { /3, (v)} = lim B {b” (5, (y +b) = /1, ()}, (@)

whereb is a zero-mean i.i.d. random vector with covariance

o e T €%I, and E,{-} denotes expectation with respectioWhen a

(b) The data and the estimated signal obtained by proper value ofe is chosen, diy{fx;(y)} is estimated using

filtering the data with the Gaussian filter with parameter a Monte-Carlo (MC) approach: 1) Generaterealizations

A= A% {b;}%_, of a lengthA random vectoib and 2) compute the
Fig. 1: lllustration of the MC-SURE procedure. k-MC-run divergence estimate

k
—(k
dvy (s, 50} = = SUBT(a by b0 — ), )
limited number of observations. This requirement intraghic =1
some performance issues, which must be properly addressddch amounts to averaging single-MC-run divergence
to arrive at an effective online strategy. These issues lage estimates. A single MC-run suffices to generate a reliable
following. estimate of divergence ifV is large. The estimation error
Noise estimation errors: The SURE-statistic formula from increases rapidly however with decreasiNgas shown in Fig.
Equation 3 assumes the noise tekmis exactly known. 3. Thus, whenV is relatively small (e.g., online block-based
However, it has to be estimated in practice. In [1], Rama#ata processing), estimates from a single run are unreliabl
et al. replacess by its estimate computing using the Donoh@s shown in Fig. 4. In such situations, a proper number
median estimator method [3] that approximates the noi6& MC-runs must be found on-the-fly to reliably compute the
standard deviation of a lengtN-datasey by & = M, /0.6745 divergence-terms for each data segment.
whereMy, is the median of theV/2 wavelet coefficients at the
finest scale. In the above case, substitutifity & is reasonable
because the noise is exactly white Gaussian and the number =~ e
N of observations is very large (& 2562): [the analysis ey
in [1] was done on images with synthetically added AWGN]. | ]
However, in streaming/online data processing settingssire
of a data block will be relatively small. As a result, errors
in estimating the noise term will be significant and will lead
to unreliable SURE-curves. The lengtfi-segments in Fig. 2 0001
are from the same periodic signal and thus have in principle 0o 3
the same frequency content. Wheén is equal to 25, more
substantial discrepancies are observed between SUREsufivig. 3: Variance of the error in estimating the divergenoeve
as compared to the case whehe equal 300. This can be for different values of the data siz¥.
attributed to the increased variance in estimating theenats
N gets smaller. Detrimental effects of strong DC componentsNumerical
Errors in divergence-term computation: Given a length- experiments suggested that the MC-SURE procedure fails to
N data segmeng and a set of candidate denoising parameteeturn an adequate denoising parameter for data with agtron
values{)\; : j = 1,2,...,J}, the reliability of the computed DC-component. This issue is independent of the length of the
SURE-statisticsl’y, (y) also depends on the accuracy of thelata block under consideration. Fig. 5 illustrates the poin
computed divergence term giyfx, (y)}. The divergence can The data segments and zp are identical except for the
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Fig. 6: Schematic system representation of the block-based
on-line data processing framework centered on the MC-SURE
algorithm.
presence of a strong DC-componer}; = D + z, where
D is a constant-vector. The application of the MC-SURE
algorithm toz produces the SURE-curve in Fig. 5a, which !ll. A PRACTICAL STRATEGY FORDENOISING SENSOR
reports the adequate filter parameter value\bf= 2. Since DATA STREAMS
zp andz are identical except for the presence of a DC term, Consider a sensor data stregm= {y, : n = 0,1,...}
a similar denoising parameter value should be neededfor comprised of a desired signal= {s, : n = 0,1,...} plus
The corresponding SURE-curve, shown in Fig. 5b, errongousAWGN. The model assumes that the noise parameter varies
reports however that no denoising is needed € 0). In as time elapses, albeit very slowly. Samples frprare taken
general, when the data under consideration has a very stramgs successive data blocks of properly chosen sizesi-Tihe
DC component, the MC-SURE algorithm appears to alwagita block is denoted by; = {y,, : N; < n < M;}, where
report that no denoising is needed regardless of the amdunt\y.; = M; — L and L is the overlap between consecutive
noise present. data blocks. The stream of data blocks; : i = 0,1,...} is
denoised one at a time. The noise in théh data blocky;
is filtered out using the prescribed filtgk () with parameter
A set to A}, the best MC-SURE-based parameter value. The
i-th outputted data block; = fA;_ (y:) is the sub-signal of
s contained iny,;. The estimate of the portion of that
is available after processing th&+1)-th data blockyz.;
is denotedsZt!). This current signal estimatéZ*!) is
formed by stitching together the available sub-signahestes:

0.10)

SURE-values

{80,81,82,...,87+1}. This is done recursively via
' T e T T T st =@ o W@ £ 87,1 O Wz, (6)
(a) SURE-curve ot wheresZt1 is new signal-estimate constructed by properly

merging via tapered windows the newly obtained sub-signal
estimatess,; with the previous signal-estimateZ). The
operator © denotes element-by-element multiplication. The
termsW %) andW,; denote here one-sided cosine tapering
windows although other types of tapering windows are also us
able. The recursive procedure is initialized with) = §,. The
above data processing strategy is illustrated in Fig. 6.tRisr
system to be effective in denoising streaming data, ind&id
a0 0" data blocks must be properly denoised using the MC-SURE
(b) SURE-curve ofz, (z plus DC-component) in spite of their relatively short lengths or the presenc®cf
erms. The steps taken to address the previously mentioned

Sues are described below.

Removal of DC components:To suppress the detrimental
effects of DC components on the MC-SURE’s performance,
we first pass each data blogk through a notch-filter cen-
tered at the DC-frequency since a data block without a

SURE-values

Fig. 5: Comparison of the SURE-curves generated using t
datasetsz and zp. Although the two SURE-curves differ
significantly,z andzp only differ by a DC-component term.



DC-component will be indifferent to this pre-filtering. Forr(*), where the choice of = 0.02 leads to the termination of
simplicity, we may assume hereon that each data block is frém divergence-curve estimation aft€r= 67 MC simulations.
of a DC-component: it would already be removed at this stage,

if present.

Noise estimation:We previously noted that estimating the L
noise termo using only the limited number of samples from
a data blocky,; produces an inaccurate estimate which, in
turn, deteriorates the accuracy of the computed SURE-curve
We mitigate the problem by combining observations from
a chosen number of consecutive streaming data blocks to o4
better estimater. Since noise characteristics are expected to
change slowly with time, it is reasonable to assume noise
observations from\/ consecutive data blocks come from i.i.d. e ™
Gaussian distributions with parameter The Donoho median
estimator produces a separate estimate éfom each of the Fig. 7: lllustration of the profile of the sequencé), which is
M previous data blocks. When processing the current dataed to track the convergence of the divergence-curve attim
blockyz, the noise estimates from thd previous data blocks
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{6z-M+1,67-p+42, ..., 67} are combined to produce amore  Onjline selection of data block size:To avoid potential
reliable estimate of via spatial aliasing issues in the processing of the streaming
M NG, data segments, sizes of data blocks are selected onling usin

o1 = TN TMAL (") waveform structure information computed from availabléada
= ! Techniques from scale-space theory [7] produce the typical

where N; denotes the length of théth data block. The |ength (e.g., scale) of the most salient signal structures i
weighted averaging takes into consideration the unequal g dataset, and help choose the minimal data block length
liabilities of individual noise estimates and gives morég’ﬂe required to capture most of the relevant information. By
to those from longer data blocks, as they are expected to &yosing the size of the next block sufficiently larger than

more reliable. _ _ the data scale, enough samples are taken to avoid potential
Divergence-curve computation:For the grid of parameter- spatial aliasing issues. Since processing latency hasriaire
values {A; : j = 1,2,...,J}, the divergence-curve is minimal, the sizes of windows must be bounded above. At the
estimated via Equation 5 usifgMC runs is denoted by 7-th data block, the computed data scales for the Rastata
k) (k) o blocks are{A7_pi1,A7_pio,...,Az}. The sizeNz ., of
di” =dvy {fx, (D)}, 7=1,2,....J ®)  the Z+1)-th data block is determined via

For a fixedy, {dgk) 1k =1,2,...}is a converging sequence N, , = min { Nmax, 0 - max {{A}z_pyoi}) (11)
of estimates of diy{ f», }. Thej-th element of the divergence-
curve is thus estimated b;é.K") with the number of MC-runs
K; chosen such that

where 0 is a multiplicative factor andVy,y is the maximal
data block size.

JUSHD _ gU) IV. RESULTS ANDDISCUSSIONS
(Kj) _ | J — % |

rp = d, 9)

J |d(_2) _ d(_1)|

J J TABLE I: Selected values for the needed parameters.
and where) is the convergence stopping crlterlpn. Segkmg Parameter Chosen value
K for each of theJ divergence-values may be impractical: Standard deviation of probing noise: 0.0002
The convergence rate dfr\"”) : k = 1,2,...} differ from MS?('”&U”‘ a'I'OWidtsegme”t S'Zw%ax 2000
- . . IXed overlap between segments:

one j-index to appther. Thus, instances might occur where, Multiplicative factor: 0 57
for one or a fewj-indexes, an unreasonably large number of Number P of past blocks 2
runs is needed to satisfy Equation 9. A group convergence Number M of past blocks 5

requirement is then used to avoid such situations: For all
parameter values;, the divergence-value is estimateddé.ff )

with the number of MC-runs choseli such that We tested the denoising strategy using synthetic and real

; datasets. Sample results and implementation steps age illu
FE) 1 ZT(K) <5 (10) trated here Wlth a real-world dataset: a sequence of yeh|cle
J J body acceleration response measurements. Table | gives the
=t parameter values selected in the implementation. We obderv
The k-indexed sequence(*) goes from one to zero as the(as noted in [1]) that the MC-SURE is very robust to variasion
divergence-curve estimal{eigk) :j=1,2,...,J} converges in the value ofe, which can change from to 10~'2 without
with additional MC runs. Fig. 7 shows an example profile fadiscernible changes in performance. Since no previous data



is available to systematically decide the initial data kloc —
size, it is chosen equal toN.« The sizes of following
blocks are systematically computed via Equation 11 usieg th
largest of the scales of the two blocks preceding them (i.e., L
P = 2). Table Il gives computed noise statistics and denoising ‘

parameters for 20 consecutive data blocks. The paramgter ‘

used as noise term when computing the SURE-curve for the ‘
i-th data block, is the weighted average of the individuatklo ‘
noise estimates from the last five data blocks (iMd.,= 5).

The denoising parametex; in this case is the MC-SURE- (a) Automated (Gaussian) denoising: 1-st segment
chosen standard deviation of the Gaussian filter. Samplétses
of the sensor data streams denoising strategy are showg.in Fi
8. Such results support the premise that good performance is
expected when the noise is AWGN or approximately so.

0837 700 100 iy 00 T000
Index

TABLE II: Computed statistics/parameters for 20 segments.

0.90

Data block || Scale | Length B2 T ¥
1 12 1000 0.0396 0.0396 3.75 0857 50 00 U“Index 200 750 300
2 12 244 | 0.0553 | 0.0427 | 4.25
3 15 244 0.0480 | 0.0435| 7.0 (b) Automated (Gaussian) denoising: 14-th segment
4 19 360 | 0.0357 | 0.0420| 5.0 o
5 13 456 | 0.0398| 0.0416 | 3.25 ’ E e
6 13 456 | 0.0464 | 0.0440 | 4.25 2
7 11 312 | 0.0405| 0.0419 | 3.25
8 15 312 | 0.0527| 0.0429 | 3.25
9 12 360 | 0.0476| 0.0451 [ 3.75
10 13 360 | 0.0381| 0.0451 | 3.25
11 31 312 | 0.0323] 0.0423 3.75
12 13 500 | 0.0368 0.0411 [ 2.75
13 14 500 | 0.0322] 0.0372| 3.0
14 13 336 0.0382 | 0.0355 35 083 El 00 . 20 750 300
15 13 336 | 0.0393] 0.0357| 35 ) »
16 15 312 0.0381 | 0.0366 | 1.0 (c) Automated (Gaussian) denoising: 7-th segment
17 13 360 | 0.0486| 0.0388 0.75 . . . . . : .
18 1 2601 0.0550 T 0.0450 05 Fig. 8: lllustration of denoising with the Gaussian filter.
19 12 312 | 0.0554 | 0.0483 3.75
20 14 288 | 0.0650 | 0.0533| 05
natural future research direction would be to extend thiskwo
to find an adaptation that would facilitate the handling afino
\.. CONCLUSION Gaussian noise.
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